Development of Drosophila larval neuromuscular junctions: maintaining synaptic strength.
نویسندگان
چکیده
In spite of the available information about the development of Drosophila neuromuscular junctions, the correlation between nerve terminal morphology and maintenance of synaptic strength has still not been systematically addressed throughout larval development. We characterized the growth of the abdominal longitudinal muscle 6 (m6) and the motor terminals Ib and Is that innervate it within segment 4. In addition, we measured the evoked excitatory junction potential (EJP) amplitudes while the Ib and Is axons were selectively recruited. Regression analysis with natural log transformation of response variables indicated that the developmental curves for m6 and the motor axons Ib and Is were best fitted as second order polynomial regressions during larval development. Initially Is terminals are longer and possess more synaptic varicosities at the first instar stage. The Is terminals also grow faster in subsequent developmental stages. The growth of nerve terminals and their target m6 are not proportional although tightly correlated. This results in a larger average muscle area innervated by a single varicosity as the animal develops. The amplitudes of the EJPs of Ib and Is neurons show no developmental difference in their amplitudes from the first to the late third larval instar. The Is axon consistently produced larger EJPs than the Ib axon at each developmental stage. The time constants for both rising and decay phases of EJPs increase exponentially throughout larval development. The results presented not only help in quantifying the normal development of Drosophila neuromuscular junctions, but also provide a framework for future investigations to properly interpret developmental abnormalities that may occur in various mutants.
منابع مشابه
Functional expression of rat synapse-associated proteins SAP97 and SAP102 in Drosophila dlg-1 mutants: effects on tumor suppression and synaptic bouton structure
The synapse-associated proteins SAP97 and SAP102 are mammalian proteins that are structurally related to the Drosophila tumor suppressor protein DlgA. Previous analyses revealed that DlgA is essential for the integrity of epithelia and neuromuscular synapses. Here we show that synaptic bouton structure is severely affected in mutant larvae carrying the dlg-1(XI-2) allele. We have tested SAP97 a...
متن کاملA perisynaptic ménage à trois between Dlg, DLin-7, and Metro controls proper organization of Drosophila synaptic junctions.
Structural plasticity of synaptic junctions is a prerequisite to achieve and modulate connectivity within nervous systems, e.g., during learning and memory formation. It demands adequate backup systems that allow remodeling while retaining sufficient stability to prevent unwanted synaptic disintegration. The strength of submembranous scaffold complexes, which are fundamental to the architecture...
متن کاملSyndapin is dispensable for synaptic vesicle endocytosis at the Drosophila larval neuromuscular junction
Syndapin is a conserved dynamin-binding protein, with predicted function in synaptic-vesicle endocytosis. Here, we combine genetic mutational analysis with in vivo cell biological assays to ask whether Drosophila syndapin (Synd) is an essential component of synaptic-vesicle recycling. The only isoform of Drosophila syndapin (synd) is broadly expressed and at high levels in the nervous system. s...
متن کاملMAPK3 at the Autism-Linked Human 16p11.2 Locus Influences Precise Synaptic Target Selection at Drosophila Larval Neuromuscular Junctions
Proper synaptic function in neural circuits requires precise pairings between correct pre- and post-synaptic partners. Errors in this process may underlie development of neuropsychiatric disorders, such as autism spectrum disorder (ASD). Development of ASD can be influenced by genetic factors, including copy number variations (CNVs). In this study, we focused on a CNV occurring at the 16p11.2 l...
متن کاملDrosophila Homolog of Human KIF22 at the Autism-Linked 16p11.2 Loci Influences Synaptic Connectivity at Larval Neuromuscular Junctions.
Copy number variations at multiple chromosomal loci, including 16p11.2, have recently been implicated in the pathogenesis of autism spectrum disorder (ASD), a neurodevelopmental disease that affects 1~3% of children worldwide. The aim of this study was to investigate the roles of human genes at the 16p11.2 loci in synaptic development using Drosophila larval neuromuscular junctions (NMJ), a wel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuroscience
دوره 115 2 شماره
صفحات -
تاریخ انتشار 2002